Cardiac Detection using CNN

MAIN TOOL

Python

Secondary tool

RESNET 18, Pytorch

INDUSTRY

Medical Imaging Analysis

📚 About the Project

❤️ Cardiac Detection Using CNN (ResNet-18)

Welcome to the Cardiac Detection Project, where we harness the power of deep learning to identify cardiac abnormalities from medical imaging data.


🚀 Project Overview

This project utilizes a Convolutional Neural Network (CNN) based on ResNet-18 to detect cardiac abnormalities. The model is trained on annotated medical images to predict bounding boxes around key cardiac regions.

  • Model: ResNet-18 (customized for cardiac detection)
  • Framework: PyTorch Lightning ⚡
  • Visualization: Class Activation Mapping (CAM)
  • Dataset: Cardiac Imaging Dataset

🧠 Key Features

  • ✅ ResNet-18 Backbone: Pretrained model fine-tuned for cardiac image analysis
  • 📊 High Accuracy: Optimized for robust detection performance
  • 🔍 Class Activation Mapping (CAM): Visualizes key regions influencing predictions
  • ⚡ Efficient Training: Leveraging PyTorch Lightning for fast experiments

🗂️ Project Structure

├── CardiacDetection.ipynb   # Jupyter notebook for training & evaluation
├── logs/                    # Training logs & checkpoints
├── checkpoints/             # Model weights (.ckpt files)
└── README.md                # Project documentation
 

📦 How to Use

1️⃣ Clone the Repository:

git clone https://github.com/SYEDFAIZAN1987/Cardiac-Detection-using-CNN.git
cd Cardiac-Detection-using-CNN
 

2️⃣ Install Dependencies:

pip install -r requirements.txt
 

3️⃣ Run the Model:

python CardiacDetection.py  # Or open the notebook CardiacDetection.ipynb
 

4️⃣ Visualize Results:
Check outputs and bounding boxes in the generated logs.


📊 Sample Results

  • Bounding boxes correctly identify cardiac regions.

🤝 Contributors

  • Syed Faizan – Project Lead & Developer

📧 Contact

For queries, feel free to reach out:


⭐ If you found this useful, give it a star! ⭐